Prof. Dr. Peter Koepke, Dr. Philipp Schlicht	Problem sheet 6
--	-----------------

Problem 21 (4 Points). We work in a ground model M. Suppose that P is a partial order, $\kappa > \omega$ is a cardinal, and $\bar{X} = (X, R_{\alpha}, f_{\alpha})_{\alpha < \kappa}$, $\bar{Y} = (Y, S_{\alpha}, g_{\alpha})_{\alpha < \kappa}$ are structures.

- (a) Suppose that $FA_{\kappa}(P)$ holds, $|X| \leq \omega_1$, and 1_P forces that \bar{X} is embeddable into \bar{Y} . Then \bar{X} is embeddable into \bar{Y} .
- (b) Suppose that $BFA_{\kappa}(B(P)^*)$ holds, $|X|, |Y| \leq \omega_1$, and 1_P forces that \bar{X} is isomorphic to \bar{Y} . Then \bar{X} is isomorphic to \bar{Y} .

Problem 22 (6 Points). We work in a ground model M. Suppose that P is a partial order and $\kappa > \omega$ is a cardinal.

- (a) Suppose that P is separative and for all $n \in \omega$ and all $p_0, ..., p_n \in P$, there is a greatest lower bound $p_0 \wedge ... \wedge p_n$ whenever there is some $p \leq p_0, ..., p_n$. Show that $BFA_{\kappa}(B(P)^*)$ implies $BFA_{\kappa}(P)$.
- (b) Let $Col(\omega, \kappa^+) := \{p \colon \omega \to \kappa^+ \mid dom(p) < \omega\}$ and $p \le q :\iff p \supseteq q$. Show that $BFA_{\kappa}(Col(\omega, \kappa^+))$ holds.
- (c) Show that

$$H^M_{(\kappa^+)^M} \not\prec_{\Sigma_1} H^{M[G]}_{(\kappa^+)^{M[G]}}$$

for every *M*-generic filter *G* on $Col(\omega, \kappa^+)$.

Problem 23 (6 Points). Suppose that M is a ground model and G is Cohen generic over M. Let $f \leq^* g : \iff \exists m \ \forall n \geq m \ f(n) \leq g(n)$ for functions $f, g \colon \omega \to \omega$.

- (a) There is some $g: \omega \to \omega$ in M[G] such that $g \not\leq^* f$ for all $f: \omega \to \omega$ in M.
- (b) There is no $g: \omega \to \omega$ in M[G] such that $f \leq^* g$ for all $f: \omega \to \omega$ in M.

Problem 24 (4 Points). Let $X \subset^* Y :\iff X \setminus Y$ is finite and $Y \setminus X$ is infinite, for sets $X, Y \subseteq \omega$. A *tower* is a \subset^* -decreasing sequence $(X_{\alpha})_{\alpha < \lambda}$ of infinite subsets of ω such that there is no infinite set $X \subseteq \omega$ with $X \subset^* X_{\alpha}$ for all $\alpha < \lambda$. Let \mathfrak{t} denote the least cardinality of a tower. Show that $\mathfrak{t} \leq \mathfrak{b}$.

Please hand in your solutions on Monday, December 02 before the lecture.